Search results for "Bioorganic chemistry"
showing 5 items of 5 documents
Functionalized Dialdehydes as Promising Scaffolds for Access to Heterocycles and β-Amino Acids: Synthesis of Fluorinated Piperidine and Azepane Deriv…
2017
Functionalized dialdehydes are considered important substrates that can be transformed into various substituted heterocyclic, alicyclic, and polysubstituted compounds. Here, we report a robust stereocontrolled procedure for the synthesis of novel functionalized trifluoromethyl-containing piperidine and azepane derivatives, based on oxidative ring cleavage of the C=C bond of diversely substituted cycloalkenes, followed by reductive ring closure of the diformyl intermediates in the presence of fluorine-containing amines.
DNA-binding studies of a series of novel water-soluble derivatives of 1,4-dihydropyridine
2018
Aim. to determine DNA interaction modes for a series of 1,4-dihydropyridines with different biological activities synthesized in the Latvian Institute of Or-ganic Synthesis. Methods. Affinity of the compounds to DNA was detected by UV/VIS spec-trometry and re-proofed by means of spectrofluorimetry, EBr extrusion assay, cyclic voltammetry and DNA melting. Radical scavenging was tested by electron paramagnetic resonance spectros-copy, peroxynitrite binding was monitored spectrophotometrically, protection of DNA against hydroxyl radical was determined by gel electrophoresis. Results. In a series of water-soluble monocyclic derivatives of 1,4-dihydropyridine with carboxylate groups in position-…
Methods of protein surface PEGylation under structure preservation for the emulsion-based formation of stable nanoparticles
2016
Proteins show remarkable versatility as multifunctional materials for therapeutic applications. They can be easily modified with the toolkit of bioorganic chemistry and are particularly attractive because of their degradability and biocompatibility. Herein, we evaluate different methods for the attachment of multiple PEG chains on the surface of the enzyme lysozyme. For this, we activated standard 2 kDa mPEG chains with four different electrophilic groups and tested their ability to react with different amino acids on the surface of our model protein. The aim was to find an effective and at the same time mild modification method that preserves the native structure and activity of the enzyme…
Harnessing nature's insights: synthetic small molecules with peroxidase-mimicking DNAzyme properties.
2011
International audience